Artificial

Length Control in Abstractive Summarization by Pretraining Information

Yizhu Liu¹ Qi Jia² Kenny Q. Zhu^{3*}
Shanghai Jiao Tong University
Shanghai, China
{\begin{align*}^{1}\text{liuyizhu,} \begin{align*}^{2}\text{Jia_qi}\\ \end{align*} \text{@sjtu.edu.cn,} \begin{align*}^{3}\text{kzhu}\text{@cs.sjtu.edu.cn} \end{align*}

— ACL 2022

Code:https://github.com/yizhuliu/lengthcontrol

2022.10.2 • ChongQing

Reported by Wenhao Chen

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

Source Document

... iranians erupted in celebration as young people waved flags from their sunroofs, blasted music from stereos and chatted online with the hashtag #irantalks. the excitement came after a breakthrough nuclear deal with the united states and other world powers...

Length	Reference Summary
10	iranians celebrate the deal online and in the streets.
30	after a breakthrough nuclear agreement deal with the united states and other world powers, celebration broke out in iranians. young people waved flages and chatted online.

Table 1: The reference summaries of one source document with lengths as 10 and 30.

The content of the reference summary with 10 tokens is the celebration of iranians. The reference summary with 30 to kens contains the reason for the celebration.

Introduction

Generated Summaries (Desired Length—10	Generated Summaries (Desired Leng	$\overline{th=10}$
--	--	--------------------

BART (Lewis et al., 2020) + Ad-hoc (Rush et al., 2015) (10 tokens)

iranians erupted in celebration as young people waved flags from

LenAtten (Yu et al., 2021) (12 tokens)

the agreement on the final day of persian new year festivities,

LPAS (Saito et al., 2020) (22 tokens)

iranians erupted in celebration . the excitement came after a breakthrough nuclear deal with the united states and other world powers .

Table 2: The summaries generated by different models.

The summaries of ad-hoc and LenAtten in Table 2 are not complete and lose the information about "deal".

Table 2 shows that LPAS con- tains redundant information about "deal" and its length is much longer than the reference summary.

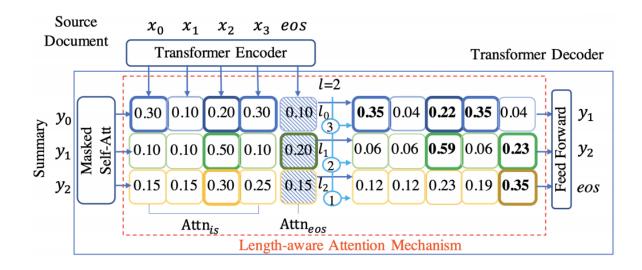


Figure 1: Overview of LAAM on Transformer Seq2seq. The bold values are boosted attention scores. The shadow boxes denote the attention scores of *eos*.

The model takes the source document $\mathbf{x} = (x_0, x_1, ..., x_m)$ and the desired length l as input nd the summary $\mathbf{y} = (y_0, y_1, ..., y_n)$ as output. x_m and y_n are eos tokens.

$$p(\mathbf{y}|\mathbf{x}, l) = \prod_{t=0}^{n} p(y_t|y_1, y_2, ..., y_{t-1}, \mathbf{x}, l)$$

$$\mathbf{h} = \{h_0, h_1, ..., h_m\}, \mathbf{h} \in \mathbb{R}^{m \times d},$$

$$\mathbf{z} = \{z_0, z_1, ..., z_n\}, \mathbf{z} \in \mathbb{R}^{n \times d}.$$

$$(1)$$

$$\mathbf{A} = \operatorname{softmax}(\mathbf{z} \cdot \mathbf{h}^T) \tag{2}$$

where $\mathbf{A} \in R^{n \times m}$ is an attention matrix. $A_t = \{a_{t,0}, a_{t,1}, ..., a_{t,m}\}$ shows the attention scores of y_t . $a_{t,i}$ is the attention score between y_t and x_i .

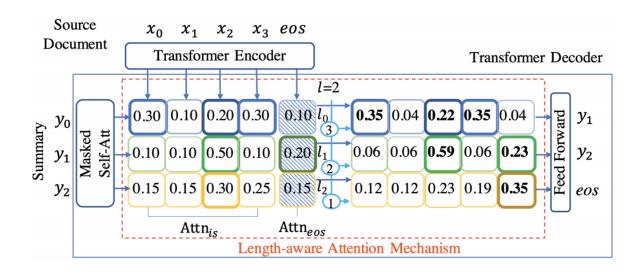


Figure 1: Overview of LAAM on Transformer Seq2seq. The bold values are boosted attention scores. The shadow boxes denote the attention scores of *eos*.

 $Attn_{is}$.

$$l_t = \begin{cases} l+1-t, & 0 \le t \le l \\ 1, & \text{otherwise} \end{cases}$$
 (3)

$$a'_{t,i} = w_{t,i} \times a_{t,i} \tag{4}$$

$$w_{t,i} = \begin{cases} 1, & p_i = 0 \\ l_t, & p_i = 1 \end{cases}$$
 (5)

vector $\mathbf{p} = \{p_0, p_1, ..., p_m\}$ to label the indics of the top l_t tokens with the highest attention sc ores in A_t as 1 and others as 0.

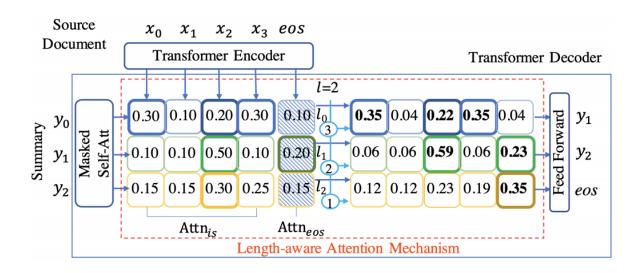


Figure 1: Overview of LAAM on Transformer Seq2seq. The bold values are boosted attention scores. The shadow boxes denote the attention scores of *eos*.

$Attn_{eos}$.

$$a'_{t,m} = (l+1-l_t) \times a_{t,m}$$
 (6)

$$p(y_t|y_{i< t}, \mathbf{x}, l) = \operatorname{softmax}(W\mathbf{c}_{t-1} + b)$$
 (7)

$$\mathbf{c_t} = \sum_{0}^{m} \tilde{a}_{t,i} h_i \tag{8}$$

$$\tilde{a}_{t,i} = \frac{a'_{t,i}}{\sum_{i=0}^{m} a'_{t,i}} \tag{9}$$

where W and b are trainable parameters.

Algorithm 1 Creating Training Set of LBD

```
Input: the training set T Output: the training set T'
```

```
1: rec() computes the R-1 recall score between two texts.
2: len() computes the length of token sequence.
3: for each training pair (src, ref) \in T do
        src = \{s_0, s_1, ...\}, where s_t is the t^{th} sentence in src.
        for i=0 \to k do
6:
            min and max denote minimum and maximum length of length
            range b_i, respectively.
7:
8:
            e_i \leftarrow \emptyset
            while S = \{s | s \in src \cap len(e_i \cup s) \leq max\} do
                 Select the s_{sel} with best rec(e_i \cup s_{sel}, ref) from S.
10:
                  if rec(e_i \cup s_{sel}, ref) > rec(e_i, ref) then
                      e_i \leftarrow s_{sel}; src \leftarrow src - s_{sel}
                  else
13:
                      break
14:
             if len(e_i) > min then
15:
                  Add (src, e_i, rec(e_i, ref)) to S(b_i).
16: S(b_i) \leftarrow \text{top } \lceil |T|/k \rceil samples from S(b_i) sorted by rec(e_i, ref)
17: T' \leftarrow S(b_1) \cup S(b_2) \cup \cdots \cup S(b_k)
18: return T'
```

we propose a heuristics to create a length-balanced dataset(LBD) by extracting summaries with various lengths from each document in original dataset and makeing lengths of these extractive summaries evenly distributed in different ranges.

	CNNDM			XSUM			
	R-1	R-2	R-L	R-1	R-2	R-L	
BART ⁴	43.13	20.05	39.32	44.61	21.19	36.00	
LenEmb	32.74	13.78	24.50	28.45	8.92	23.13	
LC	35.45	14.50	26.02	31.87	11.23	25.94	
GOLC	38.27	16.22	34.99	32.94	14.38	26.11	
LenAtten	39.82	17.31	36.20	37.20	16.05	31.24	
LPAS	42.55	20.09	39.36	43.64	19.81	35.22	
BLPAS	42.95	20.29	39.76	44.94	20.31	35.98	
LAAM	43.55	20.44	40.63	45.30	21.77	36.64	
PtLAAM	44.17	20.63	40.97	45.48	21.80	36.84	

Table 5: Gold length test with soft length control. The LAAM and PtLAAM are statistically significantly better than BLPAS with p<0.05 according to t-test.

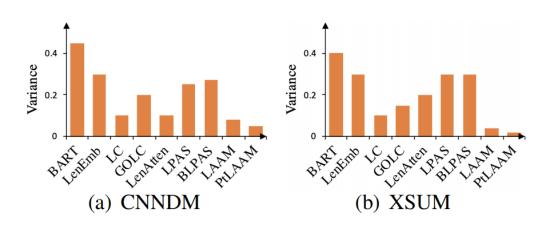


Figure 2: Variance of generated summary lengths in gold length test with soft length control.

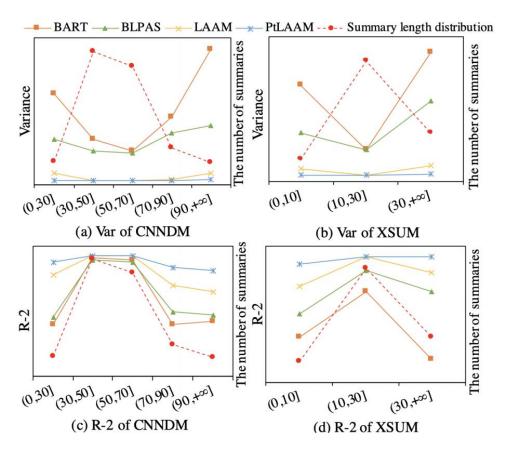


Figure 3: Var and R-2(F1) scores of gold length test with soft length control on divided test sets.

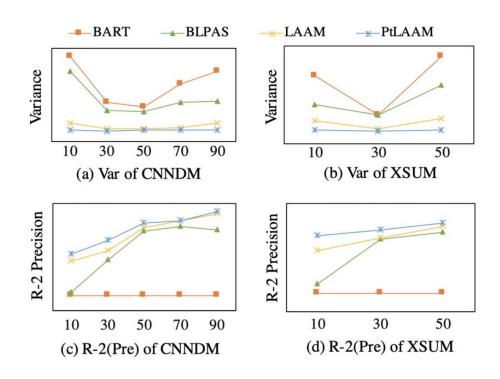


Figure 4: Var and R-2 (Pre) of arbitrary length test with soft length control on complete test sets.

Approach	(CNNDM			XSUM		
Approach	R-1	R-2	R-L	R-1	R-2	R-L	
BART	43.43	20.11	39.52	44.82	21.34	36.23	
BLPAS	43.15	20.52	40.01	45.03	20.57	36.02	
LAAM	43.63	20.76	40.63	45.38	21.77	36.64	
PtLAAM	44.21	20.77	40.97	45.53	21.82	36.85	

Table 7: The ROUGE scores of models in gold length test with hard length control.

Len	BLPAS Summaries	PtLAAM Summaries
10	iranians erupted in celebration,	iranians celebrate online and in
10	as young people waved flages	the streets after deal.
	iranians erupted in celebration	the excitement came after a
30	as young people waved flages,	breakthrough nuclear deal with
	blasted music from stereos and	the united states and other world
	chatted online . the agreement	powers . iranians erupted in
	on the final day of persian new	celebration as young people
	year festivities.	waved flags and chatted online.

Table 8: Generated summaries of two different lengths from the source document in Table 1.

Data	Model	R-1	R-2	R-L	Var(%)
	LAAM	43.63	20.76	40.63	0.05
CNNDM	w/o $Attn_{is}$	42.77	19.32	39.13	0.06
	w/o $Attn_{eos}$	43.10	20.17	37.45	0.13
	LAAM	45.38	21.77	36.64	0.03
XSUM	w/o $Attn_{is}$	43.45	20.64	34.79	0.03
	w/o $Attn_{eos}$	44.62	21.32	35.03	0.08

Table 9: Usefulness of two kinds of attentions.

Dataset	Length	Approach	R-1	R-2	R-L	Var(%)	
	Soft length control						
		BLPAS	33.04	14.83	29.42	0.14	
CNNDM	(0, 30]	LAAM	33.52	15.20	30.54	0.05	
		PtLAAM	33.65	15.77	31.26	0.03	
		BLPAS	34.37	19.54	31.66	0.10	
XSUM	(0, 10]	LAAM	34.49	20.07	32.10	0.03	
		PtLAAM	35.16	20.55	32.47	0.02	
		Hard leng	gth contro	ol			
		BLPAS	30.25	12.51	26.98	-	
CNNDM	(0, 30]	LAAM	33.64	15.23	30.76	-	
		PtLAAM	33.78	15.89	31.30	-	
		BLPAS	32.55	17.16	29.52	-	
XSUM	(0, 10]	LAAM	34.83	20.15	32.10	-	
		PtLAAM	35.16	20.58	32.49	-	

Table 10: Results of zero-shot length control.

Thank you!